A parameter-dependent refinement of the discrete Jensen's inequality for convex and mid-convex functions

نویسنده

  • László Horváth
چکیده

Correspondence: lhorvath@almos. vein.hu Department of Mathematics, University of Pannonia, 8200 Veszprém, Egyetem u. 10., Hungary Abstract In this paper, a new parameter-dependent refinement of the discrete Jensen’s inequality is given for convex and mid-convex functions. The convergence of the introduced sequences is also studied. One of the proofs requires an interesting convergence theorem with probability theoretical background. We apply the results to define some new quasi-arithmetic and mixed symmetric means and study their monotonicity and convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A REFINEMENT OF JENSEN’S INEQUALITY WITH APPLICATIONS FOR f-DIVERGENCE MEASURES

A refinement of the discrete Jensen’s inequality for convex functions defined on a convex subset in linear spaces is given. Application for f -divergence measures including the Kullback-Leibler and Jeffreys divergences are provided as well.

متن کامل

Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011